Randy Holmes-Farley
Reef Chemist
View BadgesStaff member
Super Moderator
Excellence Award
Expert Contributor
Article Contributor
R2R Research
My Tank Thread
Since this article and what exactly gets incorporated into it is still evolving, I thought I'd open it up for discussion of things I should include that are not mentioned or things that I mention that should not be included.
There will be lots of standard ammonia science stuff as well, such as ammonia in the ocean, free vs total ammonia, testing methods and complexities, etc.
Here's the start of the article:
Yes, I know the title is provocative, and likely goes against much of what you read and hear in the reef aquarium hobby. I believe, however, that the hobby may have been harmed by the continual vilification of ammonia as something that one wants to reduce as much as possible. Products and procedures to keep driving it down may well be detrimental in many reef tanks.
This bulleted summary contains the points that I make in detail in the subsequent sections of this article along with some basic science about ammonia. They are presented in a logical order of progression, but if you already know you agree with certain points, it may not be needed to read those sections to get a complete story.
1. While ammonia is toxic at very high levels, the levels needed to be lethal to a marine fish are higher than many people think. I’ve not seen any study in the literature that shows an LC50 (half of fish die) in less than 15 ppm total ammonia in seawater over 4 days or more of exposure at normal pH.
2. Sublethal toxic effects of ammonia, such as gill lesions observed by histopathology, do not seem to become significant until levels reach 5-10 ppm total ammonia at pH 8.1.
3. The toxicity of ammonia is a function of pH. At pH 8.5, toxic effects kick in at ammonia levels 2.5x lower than at pH 8.1. Likewise, at pH 7.8, it takes twice as much ammonia to be toxic as at pH 8.1. In a situation where ammonia might well reach toxic levels, such as a shipping bag, raising pH in the bag should not be a goal.
4. Toxic levels of ammonia are just not reached in typical operating reef aquaria. Seeing a measured value of 0.25 ppm, whether real or test error, is not a concern. It may be a benefit.
5. Chemical methods to control or detoxify ammonia in marine systems at doses recommended are generally ineffective at impacting ammonia, despite folks thinking they were effective. If you believe that 2 ppm ammonia will kill a fish, and you add an ammonia detoxifier and it survives, you may falsely conclude it worked, as opposed to you misunderstood how toxic ammonia was.
6. Corals demonstrate a preference for obtaining the N (nitrogen) they need from ammonia over nitrate when both are available. Organisms using nitrate as an N source need to spend extra energy to convert the nitrate to ammonia before use.
7. Continually driving ammonia down in a reef tank may be making it unnecessarily difficult for corals to easily obtain the nitrogen they need. Actions such as providing media designed for nitrifiers or adding nitrifying bacteria on a regular basis may thus be doing more harm than good.
8. Reef aquaria where N is in short supply may benefit from dosing ammonia, and that benefit may be greater than dosing nitrate. Ammonium bicarbonate is a good source of ammonia as it is inexpensive and readily available in food grade purity.
9. While measuring a detectable level of nitrate in a reef aquarium can be very useful to ensure there is some source of N available for corals, one should not assume that corals are primarily using that source since there are other sources that they may prefer to use.
10. “Cycling” a new reef tank with nitrifying bacteria is just one way to start a tank, and reefers should not simply accept the idea that it is the only way. It may be a fast way to add fish, but perhaps reefers should at least be aware of other options. There will be no stopping nitrifying bacteria from naturally growing in any reef system, but a system where consumption of N is the focus (corals, macroalgae, anemones etc.) as opposed to producers (fish and anything else fed outside food) may not require the addition of bacteria or the time spent waiting for them to develop.
There will be lots of standard ammonia science stuff as well, such as ammonia in the ocean, free vs total ammonia, testing methods and complexities, etc.
Here's the start of the article:
Ammonia is Our Friend
By Randy Holmes-Farley
By Randy Holmes-Farley
Yes, I know the title is provocative, and likely goes against much of what you read and hear in the reef aquarium hobby. I believe, however, that the hobby may have been harmed by the continual vilification of ammonia as something that one wants to reduce as much as possible. Products and procedures to keep driving it down may well be detrimental in many reef tanks.
This bulleted summary contains the points that I make in detail in the subsequent sections of this article along with some basic science about ammonia. They are presented in a logical order of progression, but if you already know you agree with certain points, it may not be needed to read those sections to get a complete story.
1. While ammonia is toxic at very high levels, the levels needed to be lethal to a marine fish are higher than many people think. I’ve not seen any study in the literature that shows an LC50 (half of fish die) in less than 15 ppm total ammonia in seawater over 4 days or more of exposure at normal pH.
2. Sublethal toxic effects of ammonia, such as gill lesions observed by histopathology, do not seem to become significant until levels reach 5-10 ppm total ammonia at pH 8.1.
3. The toxicity of ammonia is a function of pH. At pH 8.5, toxic effects kick in at ammonia levels 2.5x lower than at pH 8.1. Likewise, at pH 7.8, it takes twice as much ammonia to be toxic as at pH 8.1. In a situation where ammonia might well reach toxic levels, such as a shipping bag, raising pH in the bag should not be a goal.
4. Toxic levels of ammonia are just not reached in typical operating reef aquaria. Seeing a measured value of 0.25 ppm, whether real or test error, is not a concern. It may be a benefit.
5. Chemical methods to control or detoxify ammonia in marine systems at doses recommended are generally ineffective at impacting ammonia, despite folks thinking they were effective. If you believe that 2 ppm ammonia will kill a fish, and you add an ammonia detoxifier and it survives, you may falsely conclude it worked, as opposed to you misunderstood how toxic ammonia was.
6. Corals demonstrate a preference for obtaining the N (nitrogen) they need from ammonia over nitrate when both are available. Organisms using nitrate as an N source need to spend extra energy to convert the nitrate to ammonia before use.
7. Continually driving ammonia down in a reef tank may be making it unnecessarily difficult for corals to easily obtain the nitrogen they need. Actions such as providing media designed for nitrifiers or adding nitrifying bacteria on a regular basis may thus be doing more harm than good.
8. Reef aquaria where N is in short supply may benefit from dosing ammonia, and that benefit may be greater than dosing nitrate. Ammonium bicarbonate is a good source of ammonia as it is inexpensive and readily available in food grade purity.
9. While measuring a detectable level of nitrate in a reef aquarium can be very useful to ensure there is some source of N available for corals, one should not assume that corals are primarily using that source since there are other sources that they may prefer to use.
10. “Cycling” a new reef tank with nitrifying bacteria is just one way to start a tank, and reefers should not simply accept the idea that it is the only way. It may be a fast way to add fish, but perhaps reefers should at least be aware of other options. There will be no stopping nitrifying bacteria from naturally growing in any reef system, but a system where consumption of N is the focus (corals, macroalgae, anemones etc.) as opposed to producers (fish and anything else fed outside food) may not require the addition of bacteria or the time spent waiting for them to develop.